

SESION III: COMPLEX SURGERY AND SHORT-TERM MECHANICAL CIRCULATORY SUPPORT (MCS)

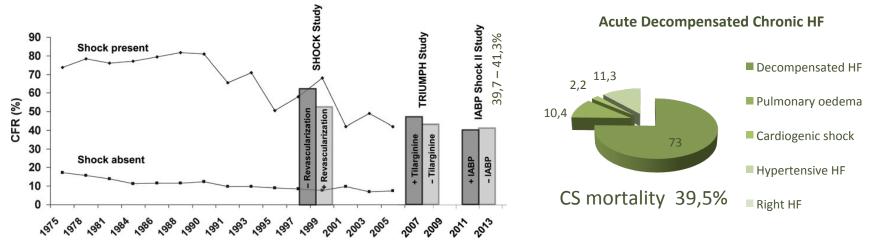
Cardiogenic shock in patient suitable for MCS or HT. Protocol in Galicia

> Miguel A. Solla-Buceta UCC Cardiológicos. XXI A Coruña

A Coruña, June 26 – 27, 2015

Table of contents:

- Motivation
- Applicability
- Structure
 - Early management
 - Refractory cardiogenic shock (CS) management
 - Outcome and destination therapy
- Conclusions



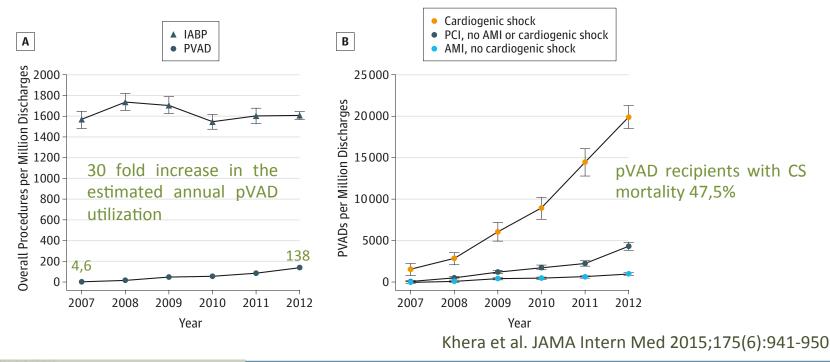
Xerencia Xestión Integrada A Coruña

Motivation:

High mortality of Cardiogenic Shock: CS remains the most common cause of death in patients with AMI or ADHF

Trends in Mortality of CS in Acute Myocardial Infarction

Werdan et al. Eur Heart J. 2014;35:156-167 Nieminen et al. EurHeart J 2006;27:2725-2736



Xerencia Xestión Integrada A Coruña

Motivation:

pVADs are increasingly used in patients with CS. Lack of clear guidelines on Indications, device selection and cost-efective care

Xerencia Xestión Integrada A Coruña

Motivation:

SERGAS Clinical Organizational Structure

Heart Team:

healthcare providers have to cooperate to improve survival of CS

Xerencia Xestión Integrada A Coruña

Motivation:

The goal of this document is to provide some recomendations on management of CS and ADHF for potential heart transplant or durable VADs recipients in Galician Region

Applicability:

Patients in Cardiogenic Shock: "a state of critical endorgan hypoperfusion due to reduced cardiac output"

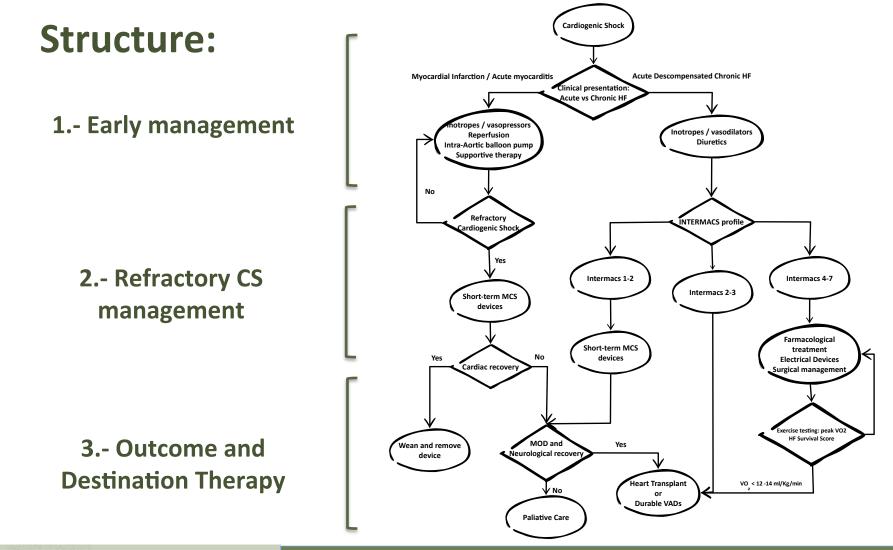
- Systolic BP <90 mmHg for > 30 min or vasopressors required to achieve a BP ≥90 mmHg;
- Pulmonary congestion or elevated left-ventricular filling pressures; Signs of impaired organ perfusion :
 - (a) altered mental status;
 - (b) cold, clammy skin;
 - (c) oliguria;
 - (d) increased serum-lactate.
 - ... after ruling a reversible cause of heart failure ...

Applicability:

... that meet the following criteria:

- Ventricular function is deemed unrecoverable or unlikely to recover without long-term device support.
- Deemed too ill to be weaned from temporary MCS devices or inotropic support.
- Capacity for meaningful recovery of end-organ function and quality of life.
- Without irreversible end-organ damage.

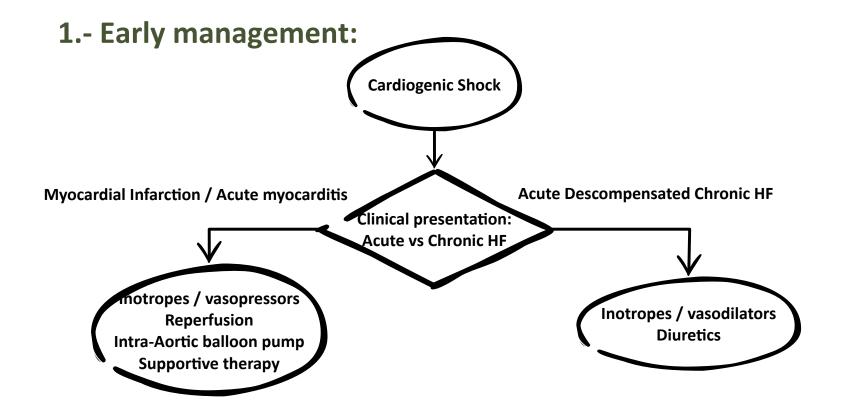
Xerencia Xestión Integrada A Coruña


Applicability:

... whithout contraindications:

- Active infection
- Severe peripheral arterial or cerebrovascular disease
- Unhealed peptic ulcer
- Recent thrombo-embolism
- Significant renal failure (e.g. CCl < 50 mL/min)
- Systemic disease with multiorgan involvement (e.g. Diabetes Mellitus)
- Other serious co-morbidity with poor prognosis (e.g COPD)
- Treated cancer in previous 5 years
- High, fixed pulmonary vascular resistance (>4-5 WU and mean TG > 15 mmHg)

GO Xerencia Xestión Integrada IDE A Coruña



Xerencia Xestión Integrada A Coruña

Structure:

1.- Early management: Clinical evaluation and diagnostic investigations

Clinical presentation: AHF ("de novo") Vs ADCHF

Age Underlying diseases Precipitating factors Hemodynamics profile

Variable	De novo AHF		p value
	Yes, n = 1,792	No, n = 3,161	_
Median SBP (mmHg) (IQR) SBP < 100 (mmHg), no. (%)	130 (95–160) 466 (26.3)	130 (103–160) 549 (17.5)	<0.0001 <0.0001
Median DBP (mmHg) (IQR) Heart rate, median (IQR)	75 (60–90) 110 (90–122)	80 (60–95) 107 (90–120)	<0.0001 0.002
Cardiogenic shock (%)	19.1	7.5	< 0.0001
Pulmonary edema (%)	39.8	35.0	0.0008
Cold extremities (%)	29.3	24.3	0.0001
Normal diuresis at baseline	55.2	52.6	0.093
Median BNP (IQR) ^a	908	1,040	0.020
	(413-1,372)	(370-2,212)	

Characteristics	Total	De novo AH	F	p value de novo	
		Yes	No ^b	de novo AHF, yes versus no	
Patients, n (%)	4,953	1,792 (36.2)	3,161 (63.8)		
Age (years)			<i></i>	< 0.0001	
<50	9.5	15.4	6.2		
51-60	16.5	18.0	15.7		
61–70	29.3	28.4	29.8		
71-80	29.8	26.1	31.8		
>80	14.9		16.5		
Male gender (%)	62.4	63.6	61.7	0.19	
Underlying diseases					
Chronic systolic heart	36.4	2.6	55.4	< 0.0001	
failure (%)					
Coronary artery disease (%)			33.7	< 0.0001	
Hypertension (%) ^a	70.2	66.3	72.4	< 0.0001	
Diabetes (%)	45.3	38.8	49.0	< 0.0001	
Atrial fibrillation/flutter (%)		13.4	30.6	< 0.0001	
Chronic renal disease	21.4	11.0	27.1	< 0.0001	
(as reported) (%)				0.0004	
Anaemia (%)	14.4	8.9	17.4	< 0.0001	
COPD/asthma (%)	24.8	15.8	29.7	< 0.0001	
Pacemaker (%)	5.5	2.2	7.4	< 0.0001	
Cardiomyopathy (%)	12.6	6.2	16.3	< 0.0001	
Precipitating factors (on admi		18.2			
Acute coronary syndrome (%)	36.9	48.6	30.2	<0.0001	
Arrhythmia (%)	26.9	19.1	31.3	< 0.0001	
Infection (%)	16.3	12.1	18.7	< 0.0001	
Poor compliance with medications (%)	13.4	2.2	19.7	<0.0001	

Follath et al. Intensive Care Med 2011;37:619-626

Xerencia Xestión Integrada A Coruña

1.- Early management: Clinical evaluation and diagnostic investigations

Clinical profiles: CS forms a spectrum that ranges from mild hypo-perfusion to profound shock

Refractory Cardiogenic Shock: Pharmacological criteria

INTERMACS profiles

1	Critical cardiogenic shock ("Crash and burn")	Life-threatening hypotension and rapidly escalating inotropic/pressor support, with critical organ hypoperfusion often confirmed by worsening acidosis and lactate levels.
2	Progressive decline ("Sliding fast" on inotropes)	"Dependent" on inotropic support but nonetheless shows signs of continuing deterioration in nutrition, renal function, fluid retention, or other major status indicator. Can also apply to a patient with refractory volume overload, perhaps with evidence of impaired perfusion, in whom inotropic infusions <i>cannot be maintained</i> due to tachyarrhythmias, clinical ischemia, or other intolerance.
3	Stable but inotrope dependent	Clinically stable on mild-moderate doses of intravenous inotropes (or has a temporary circulatory support device) after repeated documentation of failure to wean without symptomatic hypotension, worsening symptoms, or progressive organ dysfunction (usually renal).
4	Resting symptoms on oral therapy at home	Patient who is at home on oral therapy but frequently has symptoms of congestion at rest or with activities of daily living (dressing or bathing). He or she may have orthopnea, shortness of breath during dressing or bathing, gastrointestinal symptoms (abdominal discomfort, nausea, poor appetite), disabling ascites, or severe lower-extremity edema.
5	Exertion intolerant ("housebound")	Patient who is comfortable at rest but unable to engage in any activity, living predominantly within the house or housebound.
6	Exertion limited ("walking wounded")	Patient who is comfortable at rest without evidence of fluid overload but who is able to do some mild activity. Activities of daily living are comfortable and minor activities outside the home such as visiting friends or going to a restaurant can be performed, but fatigue results within a few minutes or with any meaningful physical exertion.
7	Advanced NYHA class III	Patient who is clinically stable with a reasonable level of comfortable activity, despite a history of previous decompensation that is not recent. This patient is usually able to walk more than a block. Any decompensation requiring intravenous diuretics or hospitalization within the previous month should make this person a Patient Profile 6 or lower.

Samuels et al. J Card Surg 1999;14:288-293 Beurtheret S et al. Eur Heart J 2013;34:112-120

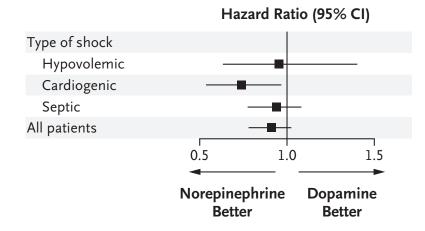
Xerencia Xestión Integrada A Coruña

1.- Early management: Clinical evaluation and diagnostic investigations

Clinical profiles: INTERMACS

1	Critical cardiogenic shock ("Crash and burn")	Life-threatening hypotension and rapidly escalating inotropic/pressor support, with critical organ hypoperfusion often confirmed by worsening acidosis and lactate levels.
2	Progressive decline ("Sliding fast" on inotropes)	"Dependent" on inotropic support but nonetheless shows signs of continuing deterioration in nutrition, renal function, fluid retention, or other major status indicator. Can also apply to a patient with refractory volume overload, perhaps with evidence of impaired perfusion, in whom inotropic infusions <i>cannot be maintained</i> due to tachyarrhythmias, clinical ischemia, or other intolerance.
3	Stable but inotrope dependent	Clinically stable on mild-moderate doses of intravenous inotropes (or has a temporary circulatory support device) after repeated documentation of failure to wean without symptomatic hypotension, worsening symptoms, or progressive organ dysfunction (usually renal).
4	Resting symptoms on oral therapy at home	Patient who is at home on oral therapy but frequently has symptoms of congestion at rest or with activities of daily living (dressing or bathing). He or she may have orthopnea, shortness of breath during dressing or bathing, gastrointestinal symptoms (abdominal discomfort, nausea, poor appetite), disabling ascites, or severe lower-extremity edema.
5	Exertion intolerant ("housebound")	Patient who is comfortable at rest but unable to engage in any activity, living predominantly within the house or housebound.
6	Exertion limited ("walking wounded")	Patient who is comfortable at rest without evidence of fluid overload but who is able to do some mild activity. Activities of daily living are comfortable and minor activities outside the home such as visiting friends or going to a restaurant can be performed, but fatigue results within a few minutes or with any meaningful physical exertion.
7	Advanced NYHA class III	Patient who is clinically stable with a reasonable level of comfortable activity, despite a history of previous decompensation that is not recent. This patient is usually able to walk more than a block. Any decompensation requiring intravenous diuretics or hospitalization within the previous month should make this person a Patient Profile 6 or lower.

Xerencia Xestión Integrada A Coruña



1.- Early management: Initial stabilization:

Fluids to obtain euvolaemia (pathophysiological considerations)

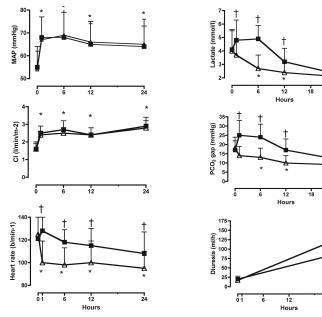
Vasopressors: Norepinephrine first choice vasopressor

Dopamine vs Norepinephrine: SOAP II study

Dopamine is associated with more arrhythmic events and 28-d mortality in patients with cardiogenic shock.

De Backer D et al. N Engl J Med 2010;362:779-89

Xerencia Xestión Integrada A Coruña



1.- Early management: Initial stabilization:

Inotropes:

Norepinephrine-dobutamine vs epinephrine

Systemic and regional hemodynamics in CS

Epinephrine is associated with:

- transient lactic acidosis,
- elevated HR,
- more arrhythmia,
- inadequacy of gastric mucosa perfusion

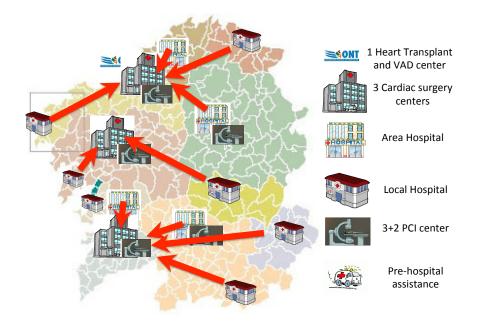
No difference 28 d mortality

Levy B et al. Crit Care Med 2011;39:450-455

Xerencia Xestión Integrada A Coruña

1.- Early management: Initial stabilization:

Inotropes: Levosimendan


Study	Patients	Levosimendan dosage	Comparator	Aim	Outcomes
HF REVIVE Trial ^{51,52}	700 with HF and symptoms at rest	0.1-0.2 µg/kg/min (I)	Placebo	Effects on composite clinical endpoints	Levosimendan produced an early greater symptom response and decreased creatinine and BNP levels
SURVIVE Trial ⁵⁴	1327 with decompensated HF requiring inotropes	$12 \mu g/kg + 0.1-0.2 \ \mu g/kg/min$	Dobutamine (5-40 µg/ kg/min)	Effects on mortality at 180 days	No differences in terms of mortality between levosimendan and dobutamine
CS Lilleberg <i>et al.</i> ⁵⁵	23 after CABG	8 or 24 μg/kg (B)	Placebo	Effects on systemic and coronary haemodynamics and myocardial substrate utilization	Levosimendan improved systemic and coronary blood flow and did not increase myocardial oxygen consumption or change substrate utilization
Labriola <i>et al</i> . ⁵⁷	11 with severe LV dysfunction after CS	12 μg/kg + 0.1 μg/ kg/min	-	Efficacy in low-output syndrome following CS	In eight patients, cardiac index was increased by >30% and PCWP reduced to <18 mmHg within 3 h
Nijhawan <i>et al</i> . ⁵⁸	18 after CABG	0.2–0.3 $\mu g/kg/min$ (I)	Placebo	Efficacy after cardio-pulmonary bypass	Increased cardiac output and reduce systemic vascular resistance
Barisin <i>et al</i> . ⁵⁹	31 after CS	12-24 µ.g/kg (B)	Placebo	Effects on ischaemic myocardial impairment during and after off-pump CABG	Increase in cardiac output, EF, and decrease in systemic vascular resistances
Plochl and Rajek ⁵⁶	10 after CS	0.1-0.2 µg/kg/min (I) as adjunctive therapy	-	Effects on haemodynamics in critically ill post-operative patients	Levosimendan increased cardiac output and stroke volume with decreases in systemic vascular resistance
Shock Delle Karth <i>et al</i> . ⁸⁰	10 with cardiogenic shock	0.1 µg/kg/min (I)	-	Efficacy in cardiogenic shock following acute ischaemia or cardiac surgery	Levosimendan treatment resulted in a significant increase in cardiac output together with a decrease systemic vascular resistance
Lehmann <i>et al</i> . ⁸¹	10 with cardiogenic shock undergoing emergency surgery	6 μg/kg + 0.2 μg/ kg/min	-	Efficacy in high risk patients, with cardiogenic shock and acute ischaemia	8 patients survived without any multiorgan failure
Morelli <i>et al</i> . ⁸⁸	28 with septic shock	0.2 µg/kg/min (I)	Dobutamine (5 µg/kg/ min)	Efficacy in sepsis-induced dysfunction	Levosimendan improvef systemic haemodynamics and regional perfusion

Xerencia Xestión Integrada A Coruña

1.- Early management: Treatment precipitating factors

Patients who present to hospitals without PCI capability are usually emergently transported to a PCI center, because mortality without transfer is markedly elevated.

2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. Circulation 2011;124:574-651

Xerencia Xestión Integrada A Coruña

1.- Early management: Treatment precipitating factors

Revascularization: Class I (B) recomendation (AHA/ESC)

SHOCK Trial and Shock Registry: 13% reduction 6m and 1y mortality

Subgroup	OR (95% CI)	OR	(95% CI)	P-Value	P _{interaction}
All Patients	0.41 (0.39, 0.43)	٠		<0.0001	
Age					
<75 y	0.36 (0.33, 0.39)	*		< 0.0001	<0.0001
>=75 y	0.45 (0.42, 0.49)	+		< 0.0001	
Sex					
Male	0.40 (0.37, 0.43)	+		< 0.0001	0.33
Female	0.42 (0.39, 0.46)	+		< 0.0001	
Diabetes					
Yes	0.46 (0.41, 0.51)	-		< 0.0001	0.01
No	0.38 (0.36, 0.41)	•		< 0.0001	
IABP use					
Yes	0.46 (0.38, 0.56)			< 0.0001	0.02
No	0.36 (0.34, 0.39)	•		< 0.0001	
CKD					
Yes	0.49 (0.43, 0.55)			< 0.0001	0.001
No	0.39 (0.36, 0.41)	•		< 0.0001	
MI					
STEMI	0.37 (0.34, 0.40)	×		< 0.0001	<0.0001
NSTEMI	0.47 (0.43, 0.51)	_		<0.0001	
		0 0.5	1	1.5	
		 Invasive Better 	Conse	rvative Better	

Figure 3 In-hospital mortality among patients with cardiogenic shock managed invasively vs conservatively in the propensity score-matched cohort.

Real world practice: lower inhospital mortality in patients managed invasively (National Inpatient Sample. US hospitals. Propensity score matching)

Hochman J et al. N Engl J Med 1999;341:625-634 Bangalore et al. The American Journal of Medicine. 2015:128(6):601-608

Xerencia Xestión Integrada A Coruña

1.- Early management: Treatment precipitating factors

Revascularization: Class I (B) recomendation (AHA/ESC)

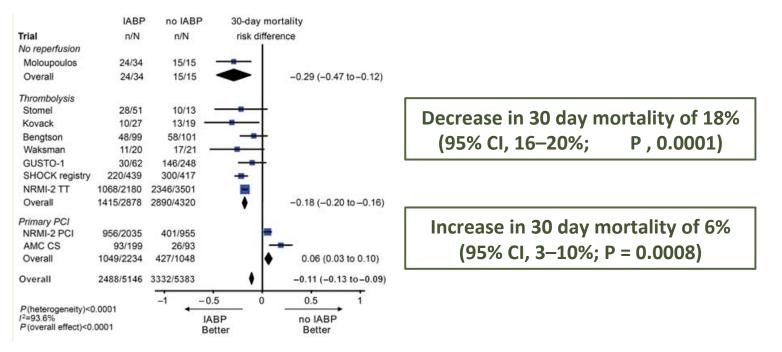
• SHOCK Trial and Shock Registry: 13% reduction 6m and 1y mortality

Surgical management:

- Prompt repair (with or without CABG) myocardial infarction mechanical complications
- Valvular replacement (balloon dilation)

Arrhythmias threatment

Xerencia Xestión Integrada A Coruña



1.- Early management: Intra-aortic balloon pump

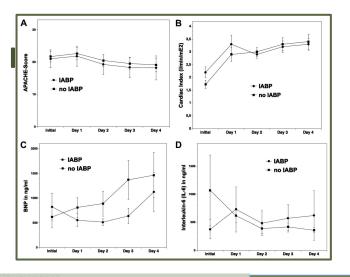
Systematic review and meta-analysis

Thrombolysis studies Vs Primary PCI studies

Sjauw et al. Eur Heart J 2009;30:459-468

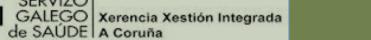
Xerencia Xestión Integrada A Coruña

1.- Early management: Intra-aortic balloon pump


Systematic review and meta-analysis

Thrombolysis studies Vs Primary PCI studies

Sjauw et al. Eur Heart J 2009;30:459-468


IABP SHOCK Trial

No significant reduction in MODS and SIRS. Significant LV unloading

n = 45 (IABP group 23)

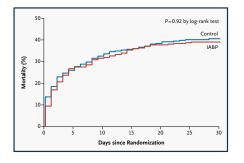
Prondzinsky et al. Crit Care Med 2010;38:152-160

1.- Early management: Intra-aortic balloon pump

Systematic review and meta-analysis

Thrombolysis studies Vs Primary PCI studies

Sjauw et al. Eur Heart J 2009;30:459-468


IABP SHOCK Trial

No significant reduction in MODS and SIRS. Significant LV unloading

Prondzinsky et al. Crit Care Med 2010;38:152-160

IABP SHOCK Trial II

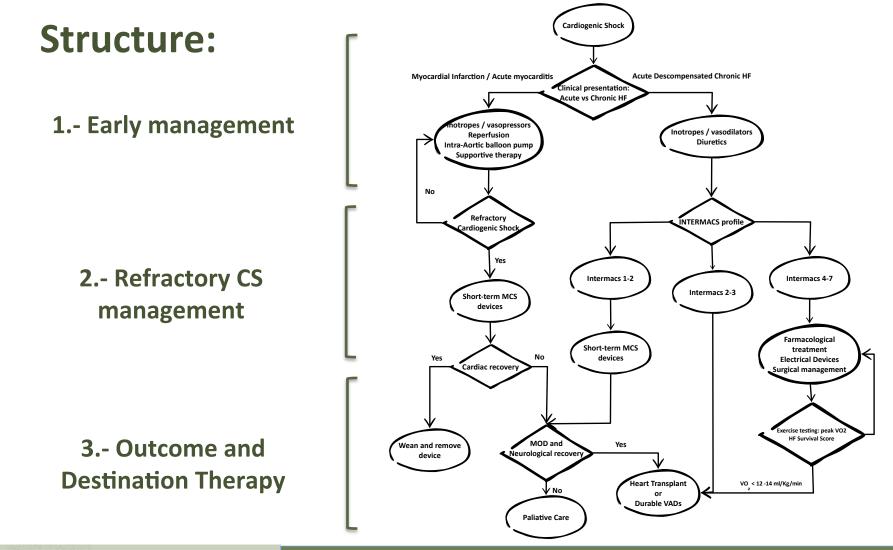
Outcome	IABP (N = 300)	Control (N = 298)	P Value	Relative Risk with IABP (95% CI)
	number	(percent)		
Primary end point: all-cause mortality at 30 days	119 (39.7)	123 (41.3)	0.69	0.96 (0.79–1.17)
Reinfarction in hospital	9 (3.0)	4 (1.3)	0.16	2.24 (0.70-7.18)
Stent thrombosis in hospital	4 (1.3)	3 (1.0)	0.71	1.32 (0.30-5.87)
Stroke in hospital	2 (0.7)	5 (1.7)	0.28	0.40 (0.08-2.03)
Ischemic	2 (0.7)	4 (1.3)	0.45	0.49 (0.09-2.71)
Hemorrhagic	0	1 (0.3)	0.50	_
Peripheral ischemic complications requiring intervention in hospital	13 (4.3)	10 (3.4)	0.53	1.29 (0.58–2.90)
Bleeding in hospital*				
Life-threatening or severe	10 (3.3)	13 (4.4)	0.51	0.76 (0.34-1.72)
Moderate	52 (17.3)	49 (16.4)	0.77	1.05 (0.74-1.50)
Sepsis in hospital	47 (15.7)	61 (20.5)	0.15	0.77 (0.54–1.08)

Thiele et al. N Engl J Med 2012;367(14):1287-96

Xerencia Xestión Integrada A Coruña

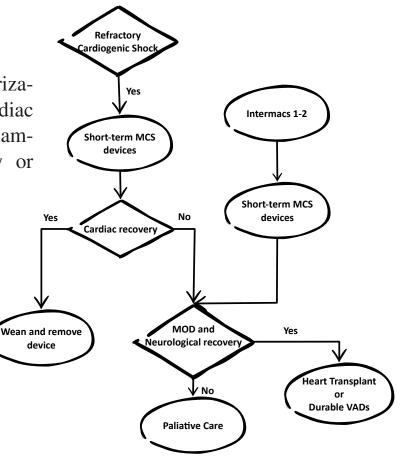
1.- Early management: Intra-aortic balloon pump. Recommendation for use:

1.- **CS after STEMI** who do not quickly stabilize with pharmacological therapy (Class IIa/IIb B). Routine use of IABP in patients with CS is not recommended (Class III A)


2.- IABP insertion should be considered in patients with haemodynamic instability/cardiogenic shock due to **mechanical complications** (Class IIa C)

3.- Acute **ICP failure**: ... When severe haemodynamic instability is present, IABP or mechanical circulatory assistance may be desirable **before emergency surgery**.

4.- Hospitals Without On-Site Cardiac Surgery: **Transfer** emergently for coronary bypass surgery patients with High-grade left main or 3-vessel coronary disease with clinical or hemodynamic instability, failed or unstable PCI result and ongoing ischemia; preferably with IABP support



Xerencia Xestión Integrada A Coruña

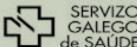


2.- Refractory CS management:

Refractory cardiogenic shock unresponsive to revascularization may necessitate institution of more intensive cardiac support with a ventricular assist device or other hemodynamic support devices to allow for myocardial recovery or subsequent cardiac transplantation in suitable patients.

2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. Circulation 2011;124:574-651

Xerencia Xestión Integrada A Coruña



Ideal MCS: Reduction wall stress and oxygen consumption (Myocardial recovery), normalization of hemodynamics (MODS prevention/Therapy) and low adverse effects

Effects of pVADs:

- Rapid reversed hemodynamic compromise
- Reduce LV wall stress and Neurohormonal axis activation, but increased systemic inflammation
- LV unloading may result in infarct size reduction and increased LV recovery

Biswaijit Kar et al. J Am Coll Cardiol 2011;57:688-696 Shah NR et al. J Am Coll Cardiol HF 2013;1:200-206 Meyns et al. J Am Coll Cardiol 2003;41:1087-95

Key Articles on MCS for Refractory Cardiogenic Shock:

	IABP-SHOCK	Thiele et	Burkoff et	Seyfarth <i>et</i>	O'Neill et	Lauten <i>et</i>	Lemaire <i>et</i>	Lamarche <i>et</i>	Combes et	Bermudez <i>et</i>
	II ¹⁴	al . ¹⁵	al . ¹⁶	¹⁶ al. ¹⁷ al. ¹⁸ al. ¹⁹	al . ¹⁹	al.7	al.8	al . ²⁰	al.21	
Year of	2012	2005	2006	2008	2013	2012	2014	2011	2008	2011
publication										
Study design	Randomized, prospective, multicenter	Randomized, prospective, single center	Randomized, prospective, multicenter	Randomized, prospective, 2-center	Observational, retrospective, registry data	Observational, retrospective, registry data	Record review, retrospective, single center	Record review, retrospective, single center	Record review, retrospective, single center	Record review, retrospective, single center
Number of patients	600	41	42	26	154	120	47	29	81	33
Type of MCS	IABP	TandemHeart	TandemHeart	Impella 2.5	Impella 2.5	Impella 2.5	Impella 2.5 & 5.0	Impella 5.0	ECMO	ECMO
Control	Medical therapy	IABP	IABP	IABP	N/A	N/A	N/A	ECMO	N/A	N/A
Hemodynamic effect	N/A	Significant improvement	Significant improvement	Significant improvement	Significant improvement	N/A	N/A	N/A	N/A	N/A
Clinical	30-day	30-day	30-day	30-day	Survival to	30-day	30-day	30-day	Survival to	30-day
outcomes	mortality, 39% (vs. 41%;	mortality, 43% (vs. 45%;	mortality, 53% (vs. 64%;	mortality, 46% (vs. 46%;	discharge, 50.7%	mortality, 64.2%	mortality, 25%	mortality, 38% (vs. 44%)	discharge, 42%	mortality, 36%
	p = ns)	p = ns)	p = ns)	p = ns)						

IABP = intra-aortic balloon pump; MCS = mechanical circulatory support; ECMO = extracorporeal membrane oxygenation.

Xerencia Xestión Integrada A Coruña

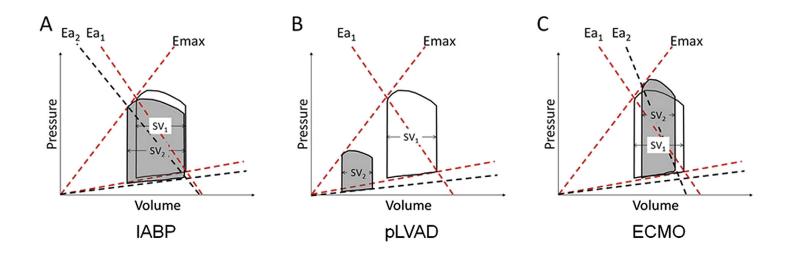
Recommendation for short-term MCS

LV assist devices for circulatory support may be considered in patients with **refractory cardiogenic shock**. (Class IIb C)¹

Non-durable MCS (pVADs and extracorporeal VADs), is reasonable as a **"bridge to recovery"** or **"bridge to decision"** for selected patients with HFrEF with acute, profound hemodynamic compromise. (Class IIa B)²

The use of temporary MCS should be strongly considered in patients with MOF, sepsis, or on mechanical ventilation to allow successful **optimization** of clinical status and neurologic assessment **prior to placement of a long term MCSD**. (Class I C)³

¹AHA and ESC Guidelines for the Management of STEMI ²2013 ACCF/AHA Guideline for the Management of Heart Failure ³2013 ISHLT MCS Guidelines. Feldman et al. J Heart Lung Transplant 2013:32:157-187

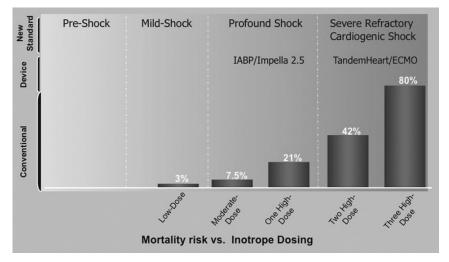

Xerencia Xestión Integrada

2.- Refractory CS management: Short-Term MCS.

Device selection:

Cardiac effects of Mechanical Support

Rihal et al. J Am Coll Cardiol 2015;65(19:7-26



Device selection:

Cardiac effects of Mechanical Support

Hemodynamic condition of the patient and Device support

Kar et al. Circulation 2012;125:1809-1817

Xerencia Xestión Integrada A Coruña

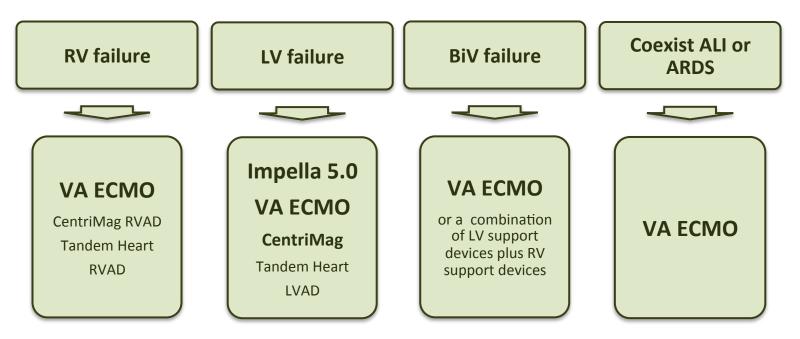
Device selection:

Cardiac effects of Mechanical Support

Hemodynamic condition of the patient and Device support

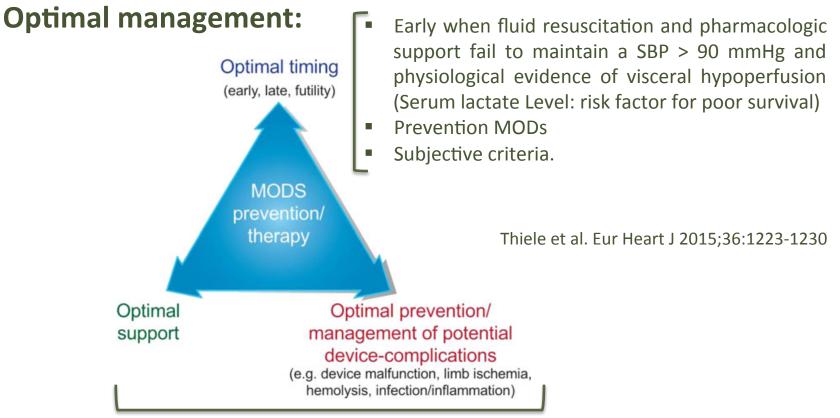
Technical considerations (ease and rapidity of insertion)

Cost Effectiveness



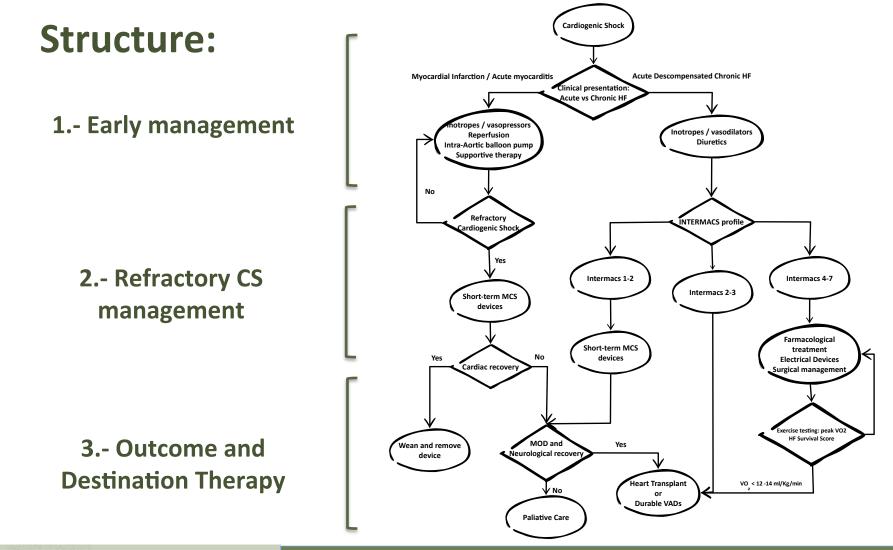
Xerencia Xestión Integrada A Coruña

Device selection:


Lamarche et al. J Thorac Cardiovasc Surg 2011;142:60-5 Sayer et al. Curr Opin Crit Care 2012;18:409-416

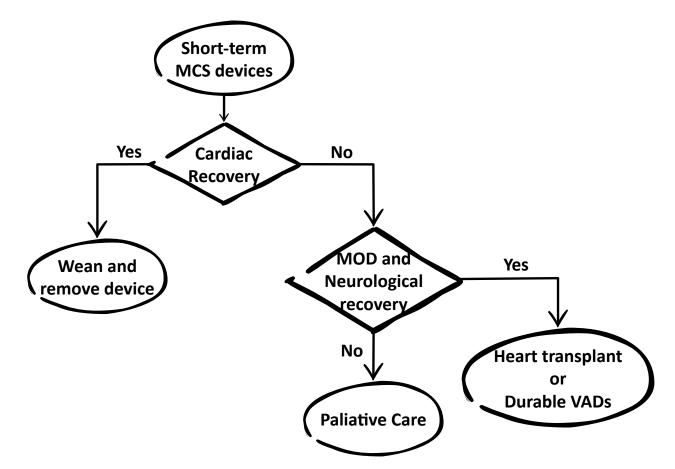
Xerencia Xestión Integrada A Coruña

2.- Refractory CS management: Short-Term MCS.



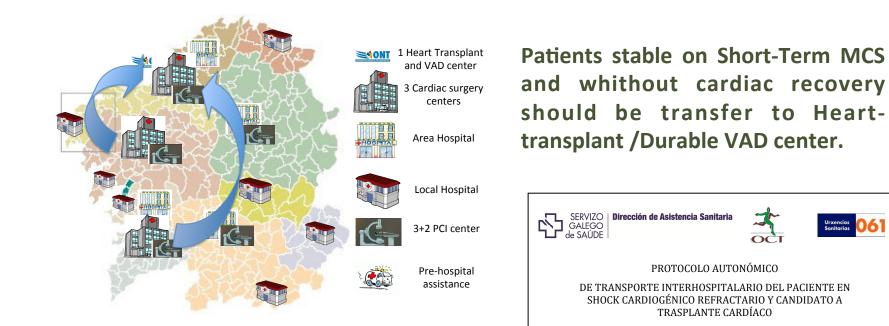
Device-efficacy Vs Device-related complications

Xerencia Xestión Integrada A Coruña



Xerencia Xestión Integrada A Coruña

3.- Outcome and Destination Therapy:



Xerencia Xestión Integrada A Coruña

3.- Outcome and Destination Therapy:

Xerencia Xestión Integrada A Coruña

3.- Outcome and Destination Therapy:

MODS and neurology disfunction : Risk factors for mortality

Table 5 Risk Factors for M	ortality for Adult Heart Transplants				
Model	Variable	No.	HR	95% CI	<i>p</i> -value
1 year mortality, $n = 10,739$ (Jan 2007–June 2012) ^a	RVAD	22	3.26	1.60-6.65	0.0012
	Temporary circulatory support ^b *	173	2.31	1.70-3.15	<.0001
	Ventilator *	322	2.03	1.59-2.61	<.0001
	Chronic pulsatile flow BiVAD	254	1.99	1.45-2.73	<.0001
	Recipient history of dialysis *	278	1.90	1.49-2.44	<.0001
	Total artificial heart	113	1.77	1.14-2.74	0.0104
	Diagnosis: congenital vs CM	276	1.66	1.18-2.32	0.0034
	Previous transplant	336	1.57	1.19-2.08	0.0016
	Chronic continuous-flow LVAD	2,351	1.44	1.21-1.73	<.0001
	Transplant year: 2007 vs 2011/2012	1,911	1.28	1.07-1.53	0.0081
	Previous transfusion	2,476	1.27	1.10-1.47	0.0010
	Male recipient/female donor vs male recipient/male donor	1,598	1.27	1.08-1.50	0.0039
	Transplant year: 2008 vs 2011/2012	1,829	1.26	1.05-1.51	0.0136
	IV drug therapy for recipient infection	1,093	1.24	1.04-1.47	0.0162
	Diagnosis: CAD vs CM	4,206	1.17	1.02-1.34	0.0278
	Not hospitalized just before transplant	5,914	0.80	0.70-0.91	0.0010
			*-		

*Spanish Heart Transplantation Registry

2014 ISHLT Adult Heart Transplantation Report. J Heart Lung Transplant 2014;33(10):996-1008

Xerencia Xestión Integrada A Coruña

3.- Outcome and Destination Therapy:

MODS and neurology disfunction : Risk factors for mortality

Table 6 Adult Primary Continuous-flow LVAD and BiVAD Implants: June 2006 to December 2013 (N = 9,372)

	Early hazard		Late hazard	
Risk factors for death	Hazard ratio	<i>p</i> -value	Hazard ratio	<i>p</i> -value
Demographics				
Age (older)	1.36	< 0.0001		
Female	1.20	0.007		
BMI (higher)	1.13	< 0.0001		
Clinical status				
History of stroke	1.30	0.03		
INTERMACS Level 1	1.69	< 0.0001		
INTERMACS Level 2	1.44	< 0.0001		
Destination therapy	1.24	0.0005		
Non-cardiac systems				
Albumin (lower)	0.90	0.02		
Creatinine (higher)			1.05	0.0003
Dialysis	2.37	< 0.0001		
BUN (higher)	1.06	< 0.0001	1.06	0.01
Right heart dysfunction				
Right atrial pressure (higher)	1.11	0.02		
RVAD in same operation	2.45	< 0.0001		
Bilirubin (higher)	1.21	< 0.0001		
Ascites	1.27	0.01		
Surgical complexities				
History of cardiac surgery	1.43	< 0.0001		
Concomitant cardiac surgery			1.21	0.0008

Sixth INTERMACS annual report. J Heart Lung Transplant 2014;33:555-564

Xerencia Xestión Integrada A Coruña

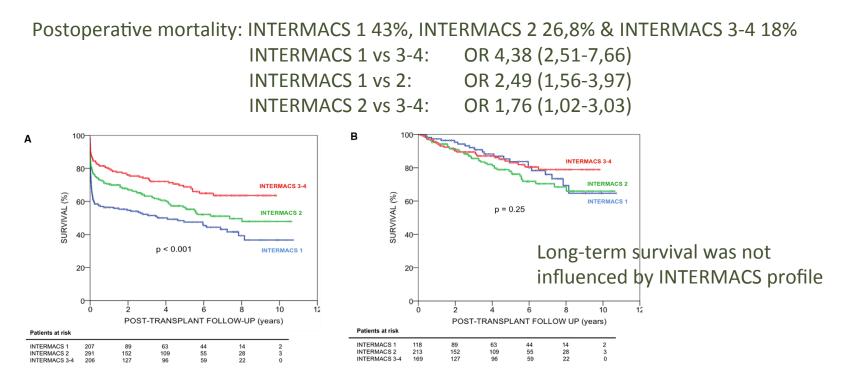
3.- Outcome and Destination Therapy:

MODS and neurology disfunction : Risk factors for mortality

End-organ recovery is key to success for ECMO as a bridge to Heart transplantation or implantable LVAD

	Before ECLS	Before VAD	P-value
Creatinine (mg/dl)	1.86 ± 0.91	1.32 ± 0.52	0.02
MDRD-GFR (ml/min/1.78 m ²)	48.73 ± 26.64	66.26 ± 28.33	0.01
Bilirubin (mg/dl)	2.03 ± 1.30	3.08 ± 2.13	0.05
Aspartate aminotransferase (U/I)	1426 ± 2176	277 ± 259	0.04
Alanine aminotransferase (U/I)	982 ± 1466	357 ± 447	0.04
MELD-XI score (pts)	18.43 ± 7.72	16.08 ± 8.59	0.05
FiO ₂ (%)	52 ± 18	26 ± 23	<0.01
Positive end-expiratory pressure (mbar)	7 ± 3	5 ± 4	0.02
Peak inspired pressure (mbar)	21 ± 4	17 ± 4	0.01
Noradrenaline (µg/kg/min)	0.408 ± 0.355	0.056 ± 0.097	<0.01
Levosimendan (µg/kg/min)	0.056 ± 0.085	0.010 ± 0.032	0.06
Dobutamine ($\mu g/kg/min$)	4.362 ± 5.268	0.056 ± 0.097	0.06
Haemoglobin (mg/dl)	11.1 ± 2.0	9.6 ± 0.9	<0.01
Platelets (×10 ⁹)	166 ± 111	69 ± 47	<0.01
C-reactive protein (mg/dl)	11.29 ± 9.45	13.21 ± 6.80	0.80
Leucocytes (×10 ⁹)	14.0 ± 7.9	11.1 ± 3.5	0.21

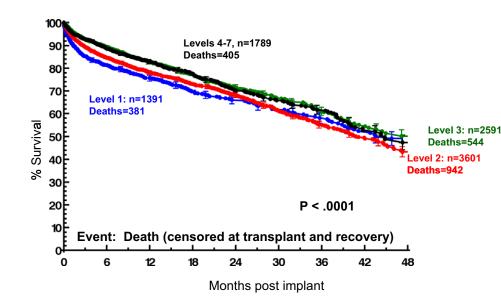
Durinka et al. ASAIO J 2014;60(2):189-92


Xerencia Xestión Integrada A Coruña

3.- Outcome and Destination Therapy:

INTERMACS profile and postoperative outcome: Heart Tx

Barge-Caballero et al. Circ Heart Fail 2013:6:763-772



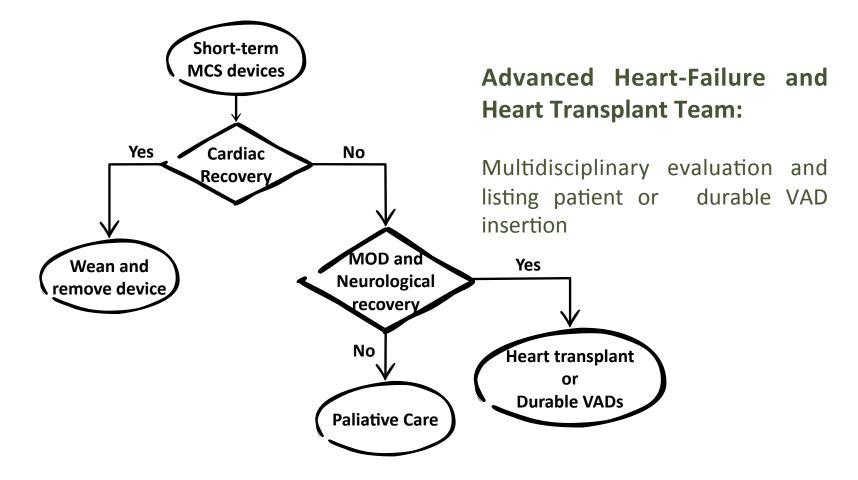
3.- Outcome and Destination Therapy:

INTERMACS profile and postoperative outcome: VADs



Table 7CF-LVAD/BiVAD Implants: January 2008 to December 2013 (N = 9,372)

	Implant da	ite era		
	2008-2010)	2011-2013	3
Patient profile at time of implant	п	%	п	%
1 Critical cardiogenic shock	464	16.0%	927	14.3%
2 Progressive decline	1,250	43.0%	2,351	36.4%
3 Stable but inotrope-dependent	659	22.7%	1,932	29.9%
4 Resting symptoms	370	12.7%	941	14.6%
5 Exertion-intolerant	84	2.9%	192	3.0%
6 Exertion-limited	49	1.7%	79	1.4%
7 Advanced NYHA Class 3	30	1.0%	43	1.0%
Total	2,906	100.0%	6,465	100.0%


Sixth INTERMACS annual report. J Heart Lung Transplant 2014;33:555-564

Xerencia Xestión Integrada A Coruña

3.- Outcome and Destination Therapy:

SERVIZO GALEGO Xerencia Xestión Integrada de SAÚDE A Coruña

Conclusions:

- Cardiogenic shock mortality remain very high
- Short-term MCS devices are useful in Refractory CS, but optimal timing and device selection are under investigation
- End-organ recovery and improve in clinical profile is associated with better prognosis
- Heart Team: healthcare providers have to cooperate to improve survival of CS

Xerencia Xestión Integrada A Coruña

